led顯示屏在使用一段時間后會出現死燈和虛焊,這段時間有可能是幾個月到幾年,也有可能是led顯示屏廠家在生產時就出現這種問題。可以說死燈和虛焊一直是led顯示屏廠家封裝SMD不可避免的問題,而LED電子大屏幕之所以會出現死燈原因竟是它。
LED電子大屏幕死燈與LED光源有關,而LED光源的五大物料分別為金錢、芯片、支架、熒光粉、固晶和封裝膠。而如果其中任何一項出現問題,都有可能造成led顯示屏出現死燈。下面由led顯示屏廠家簡要分析為何這些因素會導致led屏出現死燈現象。金線
金線具有導電率大、導熱性好、耐腐蝕、化學穩定性好和韌性好等特點,但金線的價格比較貴,導致封裝成本比其他材料的成本要貴幾倍甚至幾十倍不等。因此,為了中低端市場需求,再加上金、銀、銅和鋁有較高的導電性能,因此led顯示屏廠家使用銅線、銅合金、金包銀合金線和銀合金線代替金線。
雖然這些代替品在某些特性方面比金線好,但在化學穩定性方面卻差很多。例如,銀線和金包銀合金線容易受到硫、氯、溴化腐蝕,而銅線則容易出現氧化現象。對于吸水透氣海綿的封裝硅膠而言,這些替代方案使鍵合線易受到化學腐蝕,光源的可靠性降低,也這是為何LED電子大屏幕使用時間久后,會出現LED燈珠斷線死燈的原因。
LED電子大屏幕之所以會出現死燈原因竟是它
對于金線而言,如果打金線的長度是固定的,且金線原材料的直徑為原來的一半,那么對打的金線所測的電阻為正常的四分之一。但對于供應商而言,金線的直徑越細,其成本越低,在原材料價格不變的情況下,其利潤更高。一般而言直徑偏差1克金,可以拉制長度26.37m,直徑50μm(2 mil)的金線,也可以拉出長度105.49m,直徑25μm(1 mil)的金錢。正是由于這些偏差,使得供應商的利潤上漲。但對于使用金線封裝的led顯示屏廠家而言,如果不熟悉原材料,直接使用偷工減料的金線,那么就會使電阻變大,從而熔斷電流,降低LED光源使用壽命,這就是為何出現死燈的原因。而1.0mil的金錢使用壽命顯然比1.2mil的金線短。
LED電子大屏幕之所以會出現死燈原因竟是它
表面缺陷
金線在拉制過程中,絲材表面會出現缺陷,這個缺陷如果超過線徑5%的刻痕、劃傷、凸起、裂紋、凹坑和打折等,就會導致電流密度加大,使損傷部分易被燒毀,同時抗機械應力的能力就會降低,造成內引線損傷處斷裂。另外,金線表面如果粘有銹蝕、油污和灰塵等,會降低金線與LED芯片之間,金線與支架之間的鍵合強度,導致死燈現象發生。
LED電子大屏幕之所以會出現死燈原因竟是它
金線的拉斷負荷和延伸率都有一定的標準,如果這兩者低于標準指數,那么就不能承受樹脂封裝所產生的沖擊。同時,金線的破斷力和延伸率對引線鍵合的質量起到關鍵性的作用,而具有較高的破斷率和延伸率的鍵合絲顯然更有利于鍵合。而太軟的金絲則會導致拱絲下垂、球形不穩定、球頸部容易收縮和金線易斷裂。如果是金絲太更則可能導致芯片電極或外延打出坑洞,拱絲弧線控制困難、形成合金困難以及金球頸部斷裂。
芯片
LED燈珠的抗靜電能力與LED發光芯片有關,而與封裝工藝及封裝材料基本無關,或是影響很小。LED電子大屏幕如果受靜電影響,有可能會造成死燈現象。也就是說LED燈珠的靜電影響與LED燈珠兩個引腳間距有關,如果LED芯片裸晶的兩個電極間距非常小,一般小于一百微米,而LED引腳則是2mm。當靜電電荷需要轉移時,間距越大,越容易形成大的電位差,也就是高電壓。因此,封裝后的LED燈珠往往更容易受到靜電影響。
LED外延芯片在高溫長晶過程中,如果襯底、MOCVD反應腔內殘留的沉積物、外圍氣體和Mo源引入雜質,這些雜質就會滲入磊晶層,阻止氮化鎵晶體成核,形成各種各樣的外延缺陷,導致外延層表面形成微小坑洞,這些缺陷會嚴重影響外延片薄膜材料的晶體質量和性能。
在制作LED芯片時有一道關鍵工序,即殘余電極加工,包括清洗、黃光、熔合、蒸鍍、化學蝕刻和研磨等,這些會接觸到許多化學清洗劑,如果芯片清洗不夠干凈,會使有害化學物殘余。這些殘余的有害化學化會在LED通電時,與電極發生電化學反應,導致光衰、發黑、暗亮和死燈等現象。
LED電子大屏幕的芯片受損會直接導致LED失效,因此需要提高LED芯片的可靠性。黃光作業若顯影不完全及光罩有破洞會使發光區有殘余多出的金屬。晶粒在前段制程中,各項制程如清洗、蒸鍍、黃光、化學蝕刻、熔合、研磨等作業都必須使用鑷子及花籃、載具等,因此會有晶粒電極刮傷的情況發生。蒸鍍過程中有時需用彈簧夾固定芯片,因此會產生夾痕。而芯片電極對焊點的影響包括芯片電極本身蒸鍍不牢靠,導致焊線后電極脫落或損傷。芯片存在不當會導致電極表面氧化,表面玷污等。鍵合表面的輕微污染都有可能會景程兩者間的金屬原子擴散,造成失效或虛焊現象。而芯片電極本身可焊性差則會導致焊球虛焊。
新結構的LED芯片電極中有一層鋁,其作用為在電極中形成一層反射鏡以提高芯片出光效率,其次可在一定程度上減少蒸鍍電極時黃金的使用量從而降低成本。但鋁是一種比較活潑的金屬,一旦封裝廠來料管控不嚴,使用含氯超標的膠水,金電極中的鋁反射層就會與膠水中的氯發生反應,從而發生腐蝕現象。
LED支架
一般市場上的LED光源主要以銅作為引線框架的基體材料,為防止銅發生氧化現象,一般會在支架的表面上電鍍上層銀。如果鍍銀層過薄,在高溫條件下,支架易黃變。因此,鍍銀層的發黃不是鍍銀層本身引起的,而是受銀層下的銅層影響。在高溫下,銅原子會擴散、滲透到銀層表面,使得銀層發黃。銅的可氧化性是銅本身最大的弊病。當銅一旦出現氧化狀態,導熱和散熱性能都會大大的下降。所以鍍銀層的厚度至關重要。同時,銅和銀都易受空氣中各種揮發性的硫化物和鹵化物等污染物的腐蝕,使其表面發暗變色。有研究表明,變色使其表面電阻增加約20~80%,電能損耗增大,從而使LED的穩定性、可靠性大為降低,甚至導致嚴重事故。
LED光源怕硫,這是因為含硫的氣體會通過其多孔性結構的硅膠或支架縫隙,與光源鍍銀層發生硫化反應。LED光源出現硫化反應后,產品功能區會黑化,光通量會逐漸下降,色溫出現明顯漂移;硫化后的硫化銀隨溫度升高導電率增加,在使用過程中,極易出現漏電現象;更嚴重的狀況是銀層完全被腐蝕,銅層暴露。由于金線二焊點附著在銀層表面,當支架功能區銀層被完全硫化腐蝕后,金球出現脫落,從而出現死燈。
LED光源鍍銀層發黑可能與銀氧化有關。但EDS能譜分析等純元素分析檢測手段都不易判定氧化,因為存在于空氣環境、樣品表面吸附以及封裝膠等有機物中的氧元素都會干擾檢測結果的判定,因此判定氧化發黑的結論需要使用SEM、EDS、顯微紅外光譜、XPS等專業檢測以及光、電、化學、環境老化等一系列可靠性對比實驗,結合專業的檢測知識及電鍍知識進行綜合分析。
鍍層質量的優劣主要決定于金屬沉積層的結晶組織,一般來說,結晶組織愈細小,鍍層也愈致密、平滑、防護性能也愈高。這種結晶細小的鍍層稱為“微晶沉積層”。好的電鍍層應該鍍層結晶細致、平滑、均勻、連續,不允許有污染物、化學物殘留、斑點、黑點、燒焦、粗糙、針孔、麻點、裂紋、分層、起泡、起皮起皺、鍍層剝落、發黃、晶狀鍍層、局部無鍍層等缺陷。
在電鍍生產實踐中,金屬鍍層的厚度及鍍層的均勻性和完整性是檢查鍍層質量的重要指標之一,因為鍍層的防護性能、孔隙率等都與鍍層厚度有直接關系。特變是陰極鍍層,隨著厚度的增加,鍍層的防護性能也隨之提高。如果鍍層的厚度不均勻,往往其最薄的地方首先被破壞,其余部位鍍層再厚也會失去保護作用。鍍層的孔隙率較多,氧氣等腐蝕性的氣體會通過孔隙進入腐蝕銅基體
在電鍍過程中會用到各種含有機物的藥水,鍍銀層如果清洗不干凈或者選用質量較差以及變質的藥水,這些殘留的有機物一旦在光源點亮的環境中,在光、熱和電的作用下,有機物則可能發生氧化還原等化學反應導致鍍銀層表面變色。
水口料塑料的材質是LED封裝支架導熱的關鍵,如果PPA支架是水口料,會使PPA的塑料性能降低,從而產生以下問題:高溫承受能力差,易變形,黃變,反射率變低;吸水率高,支架會因吸水造成尺寸變化及機械強度下降;與金屬和硅膠結合性差,比較挑膠,與很多硅膠都不匹配。這些潛在問題,使得燈珠很難使用在稍大的功率上,一旦超出了使用功率范圍,初始亮度很高,但衰減很快,沒用幾個月燈就暗了。
熒光粉
水解氮化物的熒光粉容易水解,失效。
熒光粉自發熱的機制,使得熒光粉層的溫度往往高于 LED 芯片 p-n 結。其原因是熒光粉的轉換效率并不能達到 100%,因此熒光粉吸收的一部分藍光轉化成黃光,在高光能量密度 LED 封裝中熒光粉吸收的另一部分光能量則變成了熱量。由于熒光粉通常和硅膠摻在一起,而硅膠的熱導率非常低,只有 0.16 W/mK,因此熒光粉產生的熱量會在較小的局部區域累積,造成局部高溫,LED 的光密度越大則熒光粉的發熱量越大。當熒光粉的溫度達到 450 攝氏度以上是,會使熒光粉顆粒附近的硅膠出現碳化。一旦有某個地方的硅膠出現碳化發黑,其光轉化效率更低,該區域將吸收更多 LED 發出的光能量并轉化更多的熱量,溫度繼續增加,使得碳化的面積越來越大。
固晶膠
銀膠的基體是環氧樹脂類材料,熱膨脹系數比芯片和支架都大很多,在燈珠的冷熱沖擊使用環境中,會因為熱的問題產生應力,溫度變化劇烈的環境中效應將更為加劇,膠體本身有拉伸斷裂強度和延展率,當拉力超過時,那么膠體就裂開了。固晶膠的在界面處剝離,散熱急劇變差,芯片產生的熱不能導出,結溫迅速升高,大大加速了光衰的進程。
銀膠分層銀粉顆粒以懸浮狀態分散在漿料體系中,銀粉和基體之間由于受到密度差、電荷、凝聚力 、作用力和分散體系的結構等諸多因素的影響,常出現銀粉沉降分層現象,如果沉降過快會使產品在掛漿時產生流掛 ,涂層厚薄不均勻 ,乃至影響到涂膜的物化性能,分層也會影響器件的散熱、粘接強度和導電性能。
某客戶用硅膠封裝,導電銀膠粘結的垂直倒裝光源出現漏電現象,通過對不良燈珠分析。在芯片側面檢測出異常銀元素,并可觀察到銀顆粒從底部正極銀膠區域以枝晶狀延伸形貌逐漸擴散到芯片上部P-N結側面附近,因此判定不良燈珠漏電失效極有可能為來自固晶銀膠的銀離子在芯片側面發生離子遷移所造成。銀離子遷移現象是在在產品使用過程中逐漸形成的,隨著遷移現象的加重,最終銀離子會導通芯片P-N結,造成芯片側面存在低電阻通路,導致芯片出現漏電流異常,嚴重情況下甚至造成芯片短路。銀遷移的原因是多方面的,但主要原因是銀基材料受潮,銀膠受潮后,侵入的水分子使銀離子化,并在由下到上垂直方向電場作用下沿芯片側面發生遷移。因此建議客戶慎用硅膠封裝、銀膠粘結垂直倒裝芯片的燈珠,選用金錫共晶的焊接方式將芯片固定在支架上,并加強燈具防水特性檢測。
LED封裝用有機硅的固化劑含有白金(鉑)絡合物,而這種白金絡合物非常容易中毒,毒化劑是任意一種含氮(N)、磷(P)、硫(S)的化合物,一旦固化劑中毒,則有機硅固化不完全,則會造成線膨脹系數偏高,應力增大。
封裝膠
據我們的檢測表明,純硅膠到400度才開始裂解,但是添加了環氧樹脂的改性硅膠的耐熱性被拉低到環氧樹脂的水平,當這種改性硅膠運用到大功率LED或者高溫環境中,會出現膠體發黃發黑開裂死燈等現象。
LED封裝用有機硅的固化劑含有白金(鉑)絡合物,而這種白金絡合物非常容易中毒,毒化劑是任意一種含氮(N)、磷(P)、硫(S)的化合物,一旦固化劑中毒,則有機硅固化不完全,則會造成線膨脹系數偏高,應力增大。易發生硅膠“中毒”的物質有:含N,P,S等有機化合物;Sn,Pb、Hg、Sb、Bi、As等重金屬離子化合物;含有乙炔基等不飽和基的有機化合物。要注意下面這些物料:有機橡膠:硫磺硫化橡膠例如手套;環氧樹脂、聚氨酯樹脂:胺類、異氰酸脂類固化劑;綜合型有機硅RTV橡膠:特別是使用Sn類觸媒;軟質聚氰乙烯:可塑劑、穩定劑;焊劑,工程塑料:阻燃劑、增強耐熱劑、紫外線吸收劑等;鍍銀,鍍金表面(制造時的電鍍液是主要原因);Solder register產生的脫氣(有機硅加熱固化引起)。
在燈珠的冷熱沖擊使用環境中,會因為熱的問題產生應力,溫度變化劇烈的環境中效應將更為加劇,膠體本身有拉伸斷裂強度和延展率,當拉力超過時,那么膠體就裂開了。
目前國內環氧樹脂生產企業普遍生產規模小,管理模式和生產工藝落后,操作機械自動化程度不高,導致環氧樹脂的各項參數難以保障。低品質的環氧樹脂的生產與我國現狀產業現狀有關,產業急需升級。環氧樹脂中的氯不僅對支架鍍銀層、合金線或其他活潑金屬及芯片電極(鋁反射層)造成氯化腐蝕,而且也能與胺類固化劑起絡合作用而影響樹脂的固化。氯含量是環氧樹脂的一個重要物性指標,它是指環氧樹脂中所含氯的質量分數,包括有機氯和無機氯。無機氯會影響固化樹脂的電性能。有機氯含量標志著分子中未起閉環反應的那部分氯醇基團的含量,它含量應盡可能地降低,否則也要影響樹脂的固化及固化物的性能。
以上就是led顯示屏廠家簡要介紹有關LED電子大屏幕之所以會出現死燈原因竟是它,其死燈的原因包括金線、芯片、LED支架、熒光粉和封裝膠五大因素。如果其中任何一個因素受到影響,那么都會導致led顯示屏出現死燈現象。因此,led顯示屏廠家在購買原材料和封裝時一定要注意這些事項,進而降低死燈率和虛焊率。